
Supplementary Information 2:
Methods to fit Allele Frequency Fluctuations
In the main text, we calculate the chance of pairwise identity by state F , which we
defined as the probability of coalescence before a long distance or mutation event.
These chances of recent co-ancestry can be only indirectly observed as covariances
of allele frequencies, and it is not immediately clear how to best fit these results
to observed data. The fitting is also further complicated by the fact that mean
allele frequencies are usually unknown. Fitting all of them would introduce many
new parameters beyond the small number of demographic parameters and likely
lead to to over-fitting of the data, as naive allele frequency estimates will be
biased towards the most common direction of the allele frequency fluctuations.
There are different possible approaches to deal with these problems. We decided
to implement and test three different ways to fit allele frequency fluctuations
based on our model. Their full implementations are available on the github
repository: https://github.com/hringbauer/Harald.git

Method 1: Gaussian Random Field Method
In Computer Science and Machine Learning, the so called Gaussian Random
Field method is widely used to fit covariance structures (Rasmussen and Williams
2006). The goal is to fit the covariances themselves, and then use this fit to
make new predictions based on the fitted covariance structure. Here, we adapt
this method to fit allele frequency covariances. A similar approach has been
recently used by Bradburd et al. (2013).

Summarizing briefly, in the Gaussian Random Field method the observed
data yi are modeled to depend on known parameters ~xi and to covary depending
on these known parameters. The covariances affect latent, unobserved variables
fi. These unobserved variables are drawn from a multivariate normal distribution
with some mean m and covariance matrix K : f ∼ N(m,K). The entries Kij

of the covariance matrix depend on xi and xj , and a set of so called hyper
parameters θ:

Kij = K(xi, xj , θ)

The Gaussian Random Field approach utilizes the fact that a multivariate
Gaussian distribution is fully determined by its mean and its covariance matrix.
It therefore possible to write down a full likelihood of the observed data given
the covariance matrix, by integrating over all latent variables f :

L(y, θ) =
∫
f

P (y|f)P (f |K(x, θ)) (1)

If one assumes that the data y are drawn as a Gaussian around the latent
variable, this integral can be solved analytically due to convenient properties
of Gaussian probability densities. One can then easily calculate the marginal
likelihood of the observed data, and fit the hyper-parameters via maximizing
this likelihood.
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If the observations are restricted to binary discrete values (w.l.o.g. 0 or 1),
it is still possible to apply the Gaussian Random field model. One typically
transforms the latent variables f using a so called link function p(f) to take
values pi between 0 and 1 (most commonly the logit or the probit function),
and then models the discrete observed values yi to be drawn binomially with
mean pi. However, integral 1 cannot be solved analytically anymore. As it
is very high dimensional, direct numerical integration is also computationally
infeasible. Therefore, several analytical approximations to 1 are widely used
(Nickisch and Rasmussen 2008). For genotype data, we decided to utilize a
custom implementation of the Laplace method (Rasmussen and Williams 2006).
This widely used approach is based on a second order Taylor approximation
around the most likely latent variables fi. These and the Hessian are found
numerically, and these calculations can be done relatively fast. Using this
approximation allows for a analytical approximation of the total likelihood. A
full description of the method can be found in Rasmussen and Williams (2006).

Genetic data with geographic information consists of discrete genotypes yi
sampled at positions ~xi. W.l.o.g. biallelic markers have values 0 or 1. Diploids
can be split up into two haploid genotype data points. The Gaussian Random
Field method can then be adapted to fit covariance structure within such data,
but one has to deal with some peculiarities. Importantly, the magnitude of the
allele frequency covariances depends on the mean allele frequency p̄:

Cov(yi, yj)) = p̄ (1− p̄)F (xi, xj), (2)

while our model predicts the F (xi, xj). In order to account for the additional
terms, we introduce a custom link function. We utilize the inverse Fisher’s
angular transformation of allele frequency (Fisher et al. 1947):

p(f) := sin2
(
f

2

)
This is a valid link function, as its image is confined to the interval [0, 1]. Its

usefulness stems from the fact that it solves the following differential equation:

p′(f) =
√
p(f) (1− p(f)).

Allele frequency fluctuations are usually small, and a first order approximation
p(f) ≈ p(f0) + p′(f0)∆f yields:

Cov ((p(f1), p(f2)) ≈ p′(f0)2Cov(f1, f2) = p0(1− p0))Cov(f1, f2)

Comparing with Eq. 2 shows that this link function together with the F -
Matrix as Covariance kernel model the covariance structure of discrete genotypes.
As we can directly calculate F (xi, xj) with our model, this approach can be used
to fit the demographic parameters θ to the data.

To deal with the problem of over-fitting by estimating a potentially large
number of mean allele frequencies, we adapted the Gaussian Random Field
approach. Unknown allele frequencies are not estimated directly, but only the
variance of the unknown distribution of mean allele frequency: We model that
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mean latent variables are randomly drawn from a distribution with Variance σ2

around some overall mean and that then the latent variables fi are drawn with
covariance matrix K around this means. If the means are drawn from a normal
distribution, the overall covariance will also be distributed as a multivariate
normal distribution:

f ∼ N(0,K + Jσ2)

where J denotes the unit matrix, whose entries are all 1. Using this approach, we
can fit the effects of unknown distribution of mean allele frequencies as a single
hyper-parameter of the covariance matrix. For multiple, independent (unlinked)
genotypes, the marginal likelihoods can be multiplied.

Summarizing, the Gaussian Random Field approach allows us to calculate an
approximate marginal likelihood of genotype data given the expected co-ancestry
structure F based on some demographic hyper parameters θ. Using standard
methods to maximize likelihoods, we can find maximum likelihood estimates of
these θ. After experimenting with several methods, we found that the standard
Nelder-Mead method works very reliably, and used it in all our implementations.

Our approach has two sources of error. First, it is not immediately clear how
accurate the Laplace approximation is for genotype data, in particular since allele
frequency correlations are typically weak. Second, allele frequency data will not
be always distributed as a multivariate Gaussian. Under the model of diffusion
of ancestry, there will also be higher order moments. For instance, having recent
co-ancestry with individuals in one geographic direction makes it less likely to
have shared co-ancestry with individuals from the opposite direction, and this
effect is not captured well by the Gaussian Random Field model. Calculating
these higher order moments would go far beyond the pairwise diffusion model
that we outline in this work. However, the multivariate Gaussian approximation
can be expected to be an accurate approximation as long as fluctuations remain
small (Barton et al. 2013).

Method 2: Maximizing Pairwise Likelihoods
This method maximizes the likelihood of observing the three states of pairwise
genotypes. Given two markers, there are four possible states: 00, 10, 01 and
11. Using our calculations for the co-ancestry matrix F , it is straightforward to
write down the probability for each of these for states. Denoting the mean allele
frequency of marker 1 by p and marker 0 by q:

P (00) = F · p+ (1− F ) · p2

P (10) = P (01) = (1− F ) · p · q
P (11) = F · q + (1− F ) · q2.

As the mean allele frequency is usually unknown, we integrate over their
unknown distribution:

3



P (00) = F · p̄+ (1− F ) ·
(
Var(p) + p̄2)

P (10) = P (01) = (1− F ) ·
(
p̄−Var(p)− p̄2)

P (11) = F · q̄ + (1− F ) ·
(
Var(q) + q̄2)

This approach introduces one additional parameter: v := Var(p) = Var(q).
By multiplying all pairwise likelihoods one gets at a composite likelihood that
depends on the demographic parameters θ and the variance parameter v. These
pairwise likelihoods are not independent - realized co-ancestry with one individual
also increases the probability of co-ancestry with other individuals near the related
one. Therefore, multiplying pairwise likelihoods does not yield the total likelihood
of the observed data. However, this composite likelihood should be seen as a
way to fit the data, and this approach will give consistent parameter estimates
in the limit of large amounts of sufficiently uncorrelated data. We implemented
the maximization of this likelihood by using the GenericLikelihoodModel class
of the Python package statsmodels.

Method 3: Pairwise Homozygosity
One can also fit identity-by-descent probabilities F based on the signal of pairwise
homozygosity. As described in the main text, the chance of pairwise homozygosity
hi for a single marker i is given by:

hi = F + (1− F ) ·
(
p̄i

2 + (1− p̄i2)
)

Summing over all markers i with mean allele frequency p̄i gives the expected
fraction of pairwise homozygotes per pair:

E(h) = F + (1− F ) · 1
n

∑
i

(
p̄i

2 + (1− p̄i)2)
︸ ︷︷ ︸

:=s

In order to fit this signal, we minimize the sum of squared difference between
the expected and observed pairwise homozygosity for all pairs of individuals:

θ̄ = min
θ

∑
k<l

(h̄kl(θ, s)− hkl)2

In our implementation we use the method curvefit from the Python package
Scipy.

Performance on simulated Data
To test which method performs best in scenarios with realistic parameters, we
tested them on simulated data sets. We used the simulation scheme outlined in
the main text to generate data with known demographic parameters, and applied
the three methods described above. We first simulated and fitted scenarios
without a barrier, in order to test the general capability of the methods to
accurately fit allele frequency fluctuations. The outcome is visualized in Figure
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Fig. S1. Our results show that the Gaussian Random Field method (Method 1)
has a significant downward bias when estimating the neighborhood size, whereas
the pairwise likelihood and pairwise homozygosity method are approximately
unbiased. Our results also indicate that these two inference methods produce
highly correlated estimates and have similar estimation variances. We also found
that using the pairwise homozygosity method is a factor of 10 quicker than using
the pairwise likelihood method.

Limited Number of Loci and Individuals
Different methods are expected to perform differently when information is limited.
Therefore, we tested the three methods on datasets with a varying amount of
data. We simulated two types of data sets: One with a varying number of loci,
and one with a varying number of individuals. Our results are visualized in Fig.
S2 and Fig. S3.

Interestingly, the Gaussian Random Field method remains biased when the
number of loci increases; however this bias vanishes with increasing number of
individuals. The estimator variance of the other two methods decreases slowly
with increasing information. However, neither increasing the number of loci
nor increasing the number of individuals seem to yield dramatic increases in
estimation accuracy.

Fitting only the Barrier Parameter
One can fit the barrier strength parameter γ while keeping the other parameters
fixed. This can be for instance useful if one wants to test the hypothesis of
a barrier at a specific subset of loci. One can then estimate the demographic
parameters using all loci, and proceed to fit γ based only on the subset of
markers.

We therefore tested this approach. We find that fitting the barrier strength
alone does not markedly improve inference for estimating γ, at least in the tested
scenario, in which there is sufficient information to accurately fit the isolation
by distance pattern (Fig. S4).

Our results also indicate that even with 2400 individuals and a strong barrier
(γ = 0.05), one would need at least a few dozen independent biallelic markers
to reliably estimate a strong barrier. The required number of markers and
individuals for a given scenario will of course depend on the exact sampling
scheme as well as the strength and shape of isolation by distance in the data.

Binning Indivduals into Demes
Method 3 can be used to analyze deme data, as outlined in the main text.
Binning into demes of k individuals each speeds up calculations by a factor
of k2, as all pairwise comparisons for individuals between two demes reduce
to a single comparison. On the other hand, binning nearby individuals is not
expected to have a big effect on the inference scheme, as only information for
pairs within demes is lost. To confirm this intuition we tested our method on
simulated data (Fig. S5). Our results indicate that small scale binning (with
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Figure S1: Fit to allele frequency fluctuations: We tested the three methods
on synthetic datasets generated using the method described in the main text.
The datasets consist of 1000 haploid individuals, situated on a grid of 50 ×
20 individuals spaced 2 dispersal units apart along each axis, with genotype
information for 200 loci. We simulated 25 replicate data sets for four different
neighborhood sizes (and consequently different magnitudes of allele frequency
fluctuations). Throughout, m = 0.006 and a random distribution of mean allele
frequencies with σ(p) = 0.1. The lower row depicts the estimates for the Variance
Parameter that fits the fluctuations of mean allele frequencies, whose true value
is different for all three used models.
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Figure S2: Testing the methods on datasets with varying numbers of individuals.
We randomly sub-sampled the target number (200−2200 individuals) from a
grid of 100× 40 haploid individuals spaced 1 dispersal units apart along each
axis. We simulated independent data sets with genotype information for 200 loci
(m = 0.006, Nbh = 4π5 ≈ 62.83 and σ(p) = 0.1).
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Figure S3: Testing the methods on datasets with varying number of loci. We
simulated independent data sets with varying number of independent loci (50-
350). Haploid individuals were spaced on a grid of 50× 20 with a spacing of 1
dispersal unit along each axis. (m = 0.006, Nbh = 4π5 ≈ 62.83 and σ(p) = 0.1)
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Figure S4: Fitting only the barrier parameter: We simulated a dataset of 60× 40
individuals spaced on a grid with step size 1σ (m = 0.006, Nbh = 4π5 ≈ 62.83
and σ(p) = 0.1 and a strong barrier at the middle of the x-axis with γ = 0.05).
We simulated 25 replicates for different loci numbers (5, 10, · · · 100). We applied
Method 3 to fit the barrier strength γ by estimating all parameters (upper panel)
and to fit only the barrier strength and the fluctuation parameter, with the
demographic parameters fixed to their true value (lower panel).
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bins are extended up to a few dispersal units) does not have a major effect on
the parameter estimates. The variance of the inferred parameters increases as
expected, but this increase is slow.

Figure S5: Various degrees of binning: We simulated 25 datasets of 60 × 40
individuals spaced one dispersal unit apart (m = 0.006, Nbh = 4π5 ≈ 62.83 and
σ(p) = 0.1 and a barrier at the middle of the x-axis with γ = 0.1). For analysis,
we binned individual data into demes of 1 × 1 (yellow), 2 × 2 (orange), 3 × 3
(red), 4 × 4 (purple) individuals. We used Method 3 to analyze the resulting
data sets.

Scenarios of Secondary Contact
Recent secondary contact somewhat mirrors the effect of a barrier, as allele
frequencies change sharply across the place of secondary contact. This signal
could make our inference scheme wrongly fit a barrier where there is none.
Intuitively, basing inference on loci which (by chance) have approximately the
same mean allele frequencies in both ancestral populations should help to remove
this false signal.

To test this intuition, we simulated a scenario of recent secondary contact,
where some mean allele frequencies have diverged before contact, and used
Method 3 to analyze the resulting datasets. We tested our inference scheme in
two scenarios: In the first, individuals migrate uniformly after secondary contact,
whereas in the second, a strong barrier remains at the place of secondary contact.
Before inference, we gradually filtered loci that show large scale geographic
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Figure S6: Parameter estimates in a simulation of secondary contact. The
two ancestral populations allele frequencies were drawn independently from
a Gaussian with standard deviation 0.1 around an overall mean of 0.5. We
simulated a population of 50× 20 individuals spaced two dispersal units apart,
with a barrier in the middle of the x-axis, and secondary contact 100 generations
ago. We simulated 25 replicates of two scenarios after contact. Left: No barrier
to gene flow after contact. Right: A strong barrier to gene flow (γ = 0.05).
We then filtered loci that were correlated with either x- or y-axis coordinates
more than four different R2 values and rerun inference for these replicates. The
bottom row depicts the number of filtered loci that were left after filtering.
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variations. Our results indicate that secondary contact makes our inference
scheme falsely fit a strong barrier indeed (Fig. S6). Our results also confirm that
removing loci with large scale geographic structure before inference removes this
false positive signal. Reassuringly, filtering loci with large scale structure also
does not remove the signal in case of a true barrier (Fig. S6).

Conclusion
The application to simulate data indicates that the methods based on fitting
pairwise statistics (Method 2 and Method 3) are more accurate and less biased
than the computationally more elaborate Gaussian Random Field approach
(Method 1). As outlined above, the latter suffers from two potential errors: The
Laplace approximation and also the multivariate Gaussian approximation could
be inaccurate for the spatial covariance patterns typically observed in genotype
data. Our datasets were simulated under an explicit population genetics model
with parameters chosen to match typical isolation by distance patterns, and
our findings imply that the Gaussian Random Field approach with a Laplace
approximation is not suited well to fit those, unless the number of sampled
individuals gets very high (Fig. S2).

Method 3, which is based on fitting pairwise homozygosity, is additionally
faster by a factor of about 10 than Method 2. Our results show that it can be
used on binned data without much loss of accuracy. Therefore, we decided to
base inference in the main text on this method.
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